Determination of the structure of algebraic curvature tensors by means of Young symmetrizers

نویسنده

  • Bernd Fiedler
چکیده

For a positive definite fundamental tensor all known examples of Osserman algebraic curvature tensors have a typical structure. They can be produced from a metric tensor and a finite set of skew-symmetric matrices which fulfil Clifford commutation relations. We show by means of Young symmetrizers and a theorem of S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins that every algebraic curvature tensor has a structure which is very similar to that of the above Osserman curvature tensors. We verify our results by means of the Littlewood–Richardson rule and plethysms. For certain symbolic calculations we used the Mathematica packages MathTensor, Ricci and PERMS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for the construction of generators of algebraic curvature tensors

We demonstrate the use of several tools from Algebraic Combinatorics such as Young tableaux, symmetry operators, the Littlewood-Richardson rule and discrete Fourier transforms of symmetric groups in investigations of algebraic curvature tensors. In [10, 12, 13] we constructed and investigated generators of algebraic curvature tensors and algebraic covariant derivative curvature tensors. These i...

متن کامل

Generators of algebraic covariant derivative curvature tensors and Young symmetrizers

We show that the space of algebraic covariant derivative curvature tensors R is generated by Young symmetrized product tensors T ⊗ T̂ or T̂ ⊗ T , where T and T̂ are covariant tensors of order 2 and 3 whose symmetry classes are irreducible and characterized by the following pairs of partitions: {(2), (3)}, {(2), (2 1)} or {(1), (2 1)}. Each of the partitions (2), (3) and (1) describes exactly one s...

متن کامل

Generators of algebraic curvature tensors based on a (2,1)-symmetry

We consider generators of algebraic curvature tensors R which can be constructed by a Young symmetrization of product tensors U ⊗ w or w ⊗ U , where U and w are covariant tensors of order 3 and 1. We assume that U belongs to a class of the infinite set S of irreducible symmetry classes characterized by the partition (2 1). We show that the set S contains exactly one symmetry class S0 ∈ S whose ...

متن کامل

Curvature collineations on Lie algebroid structure

Considering prolongation of a Lie algebroid equipped with a spray, defining some classical tensors, we show that a Lie symmetry of a spray is a curvature collineation for these tensors.

متن کامل

On the symmetry classes of the first covariant derivatives of tensor fields

We show that the symmetry classes of torsion-free covariant derivatives ∇T of r-times covariant tensor fields T can be characterized by LittlewoodRichardson products σ[1] where σ is a representation of the symmetric group Sr which is connected with the symmetry class of T . If σ ∼ [λ] is irreducible then σ[1] has a multiplicity free reduction [λ][1] ∼ ∑ λ⊂μ[μ] and all primitive idempotents belo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره math.CO/0212278  شماره 

صفحات  -

تاریخ انتشار 2001